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This paper is concerned with the transient motion produced when a viscous 
incompressible fluid is forced from an initial state of rest. The applied force is time 
dependent in the form of an impulse, step and ramp function applied at a point and 
along a line. These cases have been chosen because they form a logical progression 
for investigating the connection between the flow Reynolds number and the sequence 
of events leading to the creation of a starting vortex. Much of the structure of the 
starting process can be revealed through a study of boundary conditions, integrals 
of the motion and the invariance properties of the governing equations prior to the 
consideration of a particular solution. The method used to bring out the flow structure 
is applicable to flows that can be treated as self-similar over some interval in time. 
The equations for unsteady particle paths are written in terms of similarity variables 
and then analysed as a quasi-autonomous system with the, usually time-dependent, 
Reynolds number treated as a parameter. The structure of the flow is examined by 
finding and classifying critical points in the phase portrait of this system. Bifurcations 
in the phase portrait are found to occur at specific values of the Reynolds number 
of the flow in question. When exact solutions of the Stokes equations for the 
low-Reynolds-number limit are examined they are found to contain two critical 
Reynolds numbers and three distinct states of motion which culminate in the onset 
of a vortex roll-up. An interesting feature of the Stokes solutions for planar unsteady 
jets is that they are uniformly valid over 0 < T < m. 

1. Introduction 
A phase-plane approach was used by Oswatitsch (1958) and Lighthill (1963) to 

describe the topology of flow patterns near a solid wall. More recently Perry and his 
co-workers (Perry & Fairlie 1974; Perry, Lim & Chong 1980; Perry & Chong 1987, 
a review) have made extensive use of critical-point theory to describe complex flow 
patterns in steady and unsteady three-dimensional flows. In studies of aerodynamic 
flows the method has been widely used to interpret surface skin-friction patterns 
visualized using oil-flow or china-clay techniques (see the review by Tobak & Peake 
1982). In all of this work the flow patterns are described in a phase space 
corresponding to physical coordinates. 

In  the present work the flow patterns in viscous jets are described in a phase space 
of similarity coordinates. This approach was used by Cantwell, Coles & Dimotakis 
(1978) to describe the self-similar flow in the plane of symmetry of a turbulent spot. 
Experimental data were collapsed onto ( x / t ,  y / t )  coordinates and the phase portrait 
of particle paths was used to determine the rate at which fluid was entrained into 
various regions on the centreline of the spot. Glezer (1981) used (z/d, y/&) coordinates 
to freeze the large-scale structure of a turbulent vortex ring. In both of these cases, 
non-self-similar motions following a viscous timescale were averaged out through the 
use of the large-eddy timescale for assigning phase information to the velocity data. 



160 B. J .  Cantwell 

Turner (1964) used a Hill’s spherical vortex in (x / t ,  y / t )  coordinates to model 
entrainment in a buoyant thermal rising at constant velocity. Recently Turner’s 
model has been modified by Griffiths (1986) to include viscous effects. A Stokes flow 
solution in ( r / d ,  0) coordinates is used to describe particle paths in and about a region 
of constant total buoyancy rising at a velocity proportional to i/d. The new model 
is used to explain laboratory observations of the distortion of buoyant dyed fluid blobs 
for low, intermediate and high values of the Rayleigh number. 

Critical Reynolds numbers in the starting process of a round jet were determined 
by Cantwell (1981 a)  using a Stokes flow approximation in (t-/ti, 0 )  coordinates. It 
was shown that transition in this constant-Reynolds-number flow is in the nature of 
a sequence of bifurcations in the phase portrait of particle paths which occur as the 
Reynolds number is increased. The process is reminiscent of transition in Couette 
flow studied by G. I. Taylor in 1923 except that the basic flow is time dependent and 
set in an infinite domain. A numerical calculation of the round jet was carried out 
up to a Reynolds number of 30 by Allen (1984). The critical Reynolds numbers of 
the full nonlinear problem were shown to be lower than those deduced from the Stokes 
approximation although the basic topology of the flow was the same. The technique 
was extended by Cantwell & Allen (1984) to the cases of the vortex ring produced 
by an impulsive force and a ramp jet produced by a force which increases linearly 
with time. In these cases the particle-path equations in similarity coordinates are not 
autonomous. Nevertheless the instantaneous phase portrait still contains useful 
information about the flow. It provides a physical picture of the tendency for the 
flow to roll or stretch a fluid line. Critical Reynolds numbers (dimensionless times) 
at which changes in flow topology occur can be identified and conclusions can be 
drawn about the mechanics of the starting process. In addition the method provides 
a basis for comparison of various flows under different conditions of forcing. Changes 
in flow structure with Reynolds number and trends with various types of forcing 
which may not be apparent when one views the flow in terms of the velocity or 
vorticity field often become evident when the flow is viewed in terms of its phase 
portrait. 

2. The impulse integral 
In this section the momentum equation is integrated over a spherical control 

volume which contains the vorticity-bearing region. This leads to a relationship 
between the force applied at the origin of the flow, the far-field distribution of pressure 
and the total hydrodynamic impulse. Figure 1 depicts the physical situation we wish 
to treat. A system of forces F(x, t )  (force per unit volume) acts on a viscous fluid inside 
a volume V with surface normal vector ndS. The force distribution and its associated 
vorticity distribution are assumed to occupy a finite region within V .  The fluid is 
incompressible and extends to infinity, 

v * u  = 0. (2.1) 

The vorticity is defined by v x u = o .  (2.2)  

u = V X A .  (2.3) 

Since there are no volume sources in V the velocity can be expressed purely as the 
curl of a vector potential A :  

The divergence of A is arbitrary. The convenient choice of a Coulomb gauge V * A  = 0 
leads, with the aid of a vector identity, to the vector Poisson equation 

V2A = -w,  (2.4) 
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ndS 

FIQURE 1. Sketch of the flow with applied force. 

the solution of which is 

where dx‘ is a volume element in V .  We want to find an expression for the 
volume-integrated momentum divided by the density given by 

(2.6) 

which we can write as a surface integral of the vector potential 

where n = x / R  = i(sin 0 cos q5) +j(sin 0 sin q5) + k(cos 0 )  and dQ is an infinitesimal 
solid angle dQ = sine dedq5. Substituting the expression for A from (2.5) into 
(2.7), exchanging the order of integration and making use of the fact that  
js x/lx-x’l dQ = ($) ( x / R )  leads to 

W )  = yet,, (2.8) 

where 
1 

Z(t) = - x x o ( x ,  t )  dx 
2 Jv 

is called the impulse of the vorticity distribution (Lamb 1932). I n  two dimensions 

where the integration is confined to the upper half-plane. The integral of the 
momentum is fully converged as long as the sphere contains all of the vorticity. 
Potential-flow motions beyond the vortical region do not contribute to the total 
momentum. 



162 B. J .  Cantwell 

2.1. Far-jield vector potential and pressure 

I n  order to  actually evaluate the impulse integral (2.9) we need to carry out an 
integral momentum balance over V .  Integrating the momentum equation and 
making use of the divergence theorem gives 

(2.11) 

At large values of r the vector potential may be approximated by the first few terms 
of a multipole expansion 

where 

- 

” c 

q = -J  w(x’,t)dx’; Q = - J w(x’,t)x’dx’. 
V V 

(2.12) 

(2.13) 

The fact that  w is divergence free and localized and F(x ,  t )  applies no net moment 
to the fluid implies that q = 0. The numerator of the second term in (2.12) can be 
written 

Q-x  = -x x {i jv x’ x w ( x ’ ,  t )  dx’ . (2.14) I 
Thus a t  large r the vector potential to lowest order is 

1 Z(t) x x  A = - - - -  
4n r3 

(2.15) 

The results given in (2.8), (2.9) and (2.15) all follow directly by analogy with classical 
results from magnetostatics. The velocity u is analogous to the magnetic field, the 
vorticity w/4n is analogous to the current density; see for example Jackson (1977). 
Using (2.15) we can estimate the surface integrals ofthe nonlinear and viscous terms 
in (2.11) as 

lim J1, (uu).ndX - -. lim J1, (Vu)*ndS - - (2.16) 
1 1 

R+ffi R4’ R+ffi R=. 
Thus as R-;. co 

The momentum equation at large r is 

au 1 -+- vp = 0 
at P 

(2.17) 

(2.18) 

We can use (2.18) to determine an expression for the far-field pressure. Using (2.15) 
for the vector potential and the fact that  V*(x/r3) = V x ( x / r 3 )  = 0 we can write the 
velocity as the gradient of a scalar. At large r 

1 
4n u = -- v YS}. (2.19) 

Substituting (2.19) into (2.18) and solving we have, to  within an additive function 
of time, 

(2.20) 
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The surface integral of the pressure in (2.17) may now be evaluated as 

(2.21) 

where the integral is over the surface of a sphere at R + w .  Substituting (2.21) and 
(2.8) into (2.17) and integrating over time gives 

I ( t )  = [ 1 dxdt. 
o v  P 

(2.22) 

The integral I(t)  is the total impulse applied to the force distribution since the onset 
of the motion. According to (2.8) two-thirds of the applied impulse ends up in the 
momentum of the fluid, the remaining one-third is removed by the pressure field a t  
infinity which opposes the motion. In two dimensions 

1 d I  Js e) n d S  = dt. (2.23) 

In the two-dimensional case where the vorticity extends to z+f 00, the monopole 
term in the expansion of the vector potential (stream function) is assumed to be zero 
so that there is no net circulation in the flow. 

2.2. Governing parameters 

For the three-dimensional case we shall choose F(x, t ) / p  to be of the form 

(2.24) 

where the force is directed along the z-axis in a system of spherical polar coordinates. 
For the two-dimensional cases 

(2.25) 

where the force is directed along the x-axis in a system of cylindrical polar 
coordinates. The quantity M is an amplitude parameter for the force. The dimensions 
of F / p  are LT-2. Thus 

units of M = Lm TPn, (2.26) 

where m = 4; 

m = 3;  

three-dimensional (point) force, 

two-dimensional (line) force, 

and for the three cases of an impulse, step and ramp forcing 

n = 1 ; f ( t )  = b(t) ,  

n = 2 ;  f ( t )  = h(t) ,  

(2.27) 

(2.28) 

where h(t)  is the Heaviside function and b(t) is the delta function. The corresponding 
impulse integrals are 

(2.29) 

); point force,] 

Mtmk-1 
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where k = n/m, (2.30) 

and i t  is understood that when n = 1 the term ( n -  1)  is set to 1. In  the next section 
we shall use the scalar impulse I ( t )  = Mtmk-l / (n-  1)  and the unit parameters m and 
n to generate similarity forms of the governing equations. 

3. Invariant groups and similarity forms 
In  this section general similarity variables and functional forms are constructed 

using the invariance of the governing equations, boundary conditions and impulse 
integral under a two-parameter group of stretching transformations. The Stokes, 
Navier-Stokes and Euler equations are considered and the results are combined to 
identify an appropriate time-dependent Reynolds number for each flow case. 

The nature of the forcing and, in effect, the units of M have a pervading influence 
on the evolution of length and velocity scales in the flow. To the extent that the force 
distribution has no lengthscale of its own, M and v are the only parameters which 
appear in the problem. This fact, combined with the simple geometry of an 
unbounded flow a t  infinity, suggests the possible existence of a similarity solution. 

3.1. The Xtokes equations 
The Stokes equations 

are invariant under the two-parameter group of stretching transformations 

where a and b are arbitrary. Substitution of (3.2) into (3.1) generates a set of equations 
identical with (3.1) but in terms of new variables, thus confirming the invariance. 
When we require further that the impulse integrals (2.29) be invariant under (3.2) 
then, in three dimensions, 

2 Mt4k-1 
su2d3z = -___ 

3 (n- 1 )  ' 

which, when transformed according to 13.2), becomes 

The two-dimensional impulse integral 

(3.3) 
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becomes 
(3.6) 

For invariance we require in both cases 

b = 2mk-(m+ 1 ) .  (3.7) 
The nature of the forcing determines the time dependence of the impulse integral and 
the units of M .  The unit parameters m and n in turn determine the value of b which 
leaves both the equations and impulse-integral invariant under the group (3.2). The 
parameter a remains arbitrary. The invariance of the overall problem under (3.2) 
confirms the existence of similarity solutions. 

Appropriate similarity variables can now be determined from the characteristic 
equations of the group (3.2). These are found by differentiating the relations in (3.2) 
with respect to a and evaluating the result a t  the identity element a = 0 :  

Similarity variables found by integrating various combinations of the characteristic 
equations (3.8) are, in dimensionless form, 

If we substitute these forms into the full Navier-Stokes equations 

(3.9) 

(3.10) 

the result is aU,/a& = 0 and 

This exercise has lead to  the combination 

(3.12) 

as the appropriate Reynolds number for this class of flows. As Re+O the Stokes 
approximation becomes valid. This may correspond to  small or large time depending 
on the value of k.  

3.2. The Euler equations 

It may be mentioned in passing that (3.12) is the appropriate definition of the 
Reynolds number a t  all times. To see this we shall digress for a moment and cohsider 
the invariance properties of the Euler equations. At high Reynolds number the 
large-scale structure of turbulent free shear flows is observed to be independent of 
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v. In  an approximate sense M is the only parameter in the problem and one should 
expect a similarity solution of the Euler or Reynolds equations 

These are invariant under the two-parameter group 

xi = ea$. a ,  

t = calk E, 

P _  - - e(Zk-2)Jk P _ ,  
P P 

(3.13) 

(3.14) 

where a and k are arbitrary. Invariance of the impulse integrals (2.29) is assured as 
long as k = n/m as before. Appropriate similarity variables can now be determined 
from the characteristic equations of (3.14) for the group parameter a.  These are 

(3.15) 

In  dimensionless form the similarity variables, found by integrating various com- 
binations of the equations in (3.15) are 

(3.16) 

Substituting (3.16) into the full Navier-Stokes equations (3.13) gives i3Ui/a& = 0 and 

The expression (3.12) appears again. However in this instance it divides the second 
derivative term and no regular limit Re+ 00 exists. At this point we should mention 
the special case k = corresponding to the flow from a round jet with 
F(x,  t ) / p  = ( O , O ,  Mu(t)) .  In  this case the Reynolds number is constant, the stretching 
groups (3.2) and (3.14) are identical and the reduced equations (3.11) and (3.17) 
become identical after a resealing of variables. The ratios of various length and 
velocity scales are independent of time. This is the one case that admits a similarity 
solution to the full Navier-Stokes equations a t  all Reynolds numbers. At high 
Reynolds number we should expect a solution that is highly complex in space but 
regular in time. This implies that the chaotic flow observed in real jets is directly 
associated with instabilities in the neighbourhood of the jet origin. 

4. Phase portrait of particle paths 

of the topology of the equations for unsteady particle paths, 
At this point we want to combine the results of the previous sections in a study 

- dxi = Ui(X, t ) ,  
dt 
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which, when recast in terms of Stokes flow similarity variables (3.9), become 

(4.2) 

where ti = xi / (4v t ) : ,  r = lnt  and m = 4 for three-dimensional flows and m = 3 for 
two-dimensional flows. The phase portrait of (4.2) corresponds to the vector field 
defined by the right-hand side of the equations at a fixed value of the Reynolds 
number. The topology of this ,vector jield is  the primary concern of this paper. Note 
that a t  large radii the equations are dominated by the -+ti term and the solution 
in the far field is a series of rays converging toward the origin. The scaling of 
coordinates with time brings fluid from infinity into the disturbance region of the jet 
where i t  encounters the outwardly diffusing vorticity field. It is often useful to  display 
a flow pattern in this manner and the introduction of a simple descriptor is warranted. 
In  the remaining discussion we shall use the term entrainment diagram to refer to the 
vector field of particle paths in similarity coordinates defined by the phase portrait 
of (4.2). This term has been used before to  denote the use of similarity coordinates 
to describe mean particle paths of turbulent flows (Cantwell 1981 13). 

4.1. Invariance with respect to a moving observer 
A useful feature of the entrainment diagram is that i t  does not depend on the choice 
of a particular observer. To see this we consider the transformation to moving 
coordinates 

(4.3) 

x. a = $.-a.vib, a a  

t = F, 

where the a$ are arbitrary dimensionless rates. The similarity velocities (3.9) can be 
written 

(4.4) 

In  terms of similarity variables, the transformation (4.3) becomes a translation, 

When the right-hand side of (4.2) is transformed to  new variables using (4.5) the result 
is 

(4.6) Retm u~(<)-+c~ = Reim Oi(i)-&, 

independent of the a$. The invariance of the vector field of the entrainment diagram 
under a transformation to  an observer moving at a velocity commensurate with the 
viscous timescale of the flow but with an arbitrary rate is important because i t  ensures 
that the phase portrait of (4.2) represents essential structural features of the flow that 
are not simply a consequence of an arbitrary choice of the frame of reference. 

4.2. Critical points 
The solutions we wish to  consider in the next section are most simply posed in 
spherical polar coordinates (axisymmetric’ flows) or cylindrical coordinates (planar 
flows). I n  both cases the equations for particle paths are 
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d8 ,t?(r, 8, t )  - dr 
dt dt r 
- = u(r ,  0, t ) ;  - - -, (4.7) 

where u and 'II are the radial and tangential velocities. In  terms of similarity variables 
(3.91 

where r = lnt and 

p / m  tzk-1 
and Re = (4.10) 

The equations (4.8) are strictly autonomous only for k = i. Critical points ([,, 8,) of 
(4.8) occur where 

Re?m = f C  . /7([c'e,) = 0. (4.11) 

(n- 4V' 

2 u ( t c ,  eCy 
Near a critical point (4.8) may be expanded as 

(4.12) 

as long as the flow is regular in the neighbourhood of (&, ec). The coefficients of the 
matrix B are related to the first partial derivatives of (4.8) evaluated a t  the critical 
point. 

(4.13) 

The topology of the flow in the neighbourhood of the critical point is determined by 
the two invariants p and q where 

p = - ( a + d ) ,  q = ad-bc. (4.14) 

The eigenvalues of the matrix B satisfy the characteristic equation h2+ph+q = 0 
with roots h = -&-t-+[(p2+q)f]. If ( p , q )  lies above the parabola q = &' the eigen- 
values are eomplex-conjugates and the local trajectories form a stable focus. If ( p ,  q )  
lies below q = &' but above q = 0 the critical point is a node and if q < 0 the critical 
point is a saddle. 
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4.3. Cont inu i t y  

In general p, q, 5, and 8, depend on Re and the possibility of a bifurcation in the 
entrainment diagram follows. When continuity is applied to the flow near the critical 
point a certain relationship is imposed between p and q. The axisymmetric case will 
be treated first. In  spherical polar coordinates the continuity equation is 

a u  case av 
sin8 a8 

2u+c--+- v+- = 0. 

Near a critical point (c,, O,), 
(4.15) 

(4.16) 

Substituting (4.16) into (4.15) and taking the limit c+&, 8+8, we see that there 
are two possible cases: 

case 1 .  8, + 0 
p = i (three-dimensional flows); (4.17) 

case 2. 8, = 0, c = 0. Substituting p = i + d  along with a = -$-2d into q = ad gives 

q = (p-i) (i-2p) (three dimensional flows). (4.18) 

Any on-axis critical point must lie on the parabola in @,q)-coordinates given by 
(4.18). Any off-axis critical point will follow the line p = $. 

For the case of planar flows, the continuity equation in cylindrical coordinates is 

au av 
U+t-+- = 0. a6 ae 

Near a critical point (E,,  8,) 

(4.19) 

(4.20) 

Substituting (4.20) into (4.19) and taking the limit E - Q ,  8+8, gives 

p = 1 (two-dimensional flows). (4.21) 

Any critical point must lie on the line p = 1. Thus the value of p is fixed by continuity 
and the dimensionality of the space in which the flow is imbedded. These results follow 
only from considerations of continuity and the form of the particle-path equations 
(4.8). 

The quantity q involves products of derivatives of the velocity field and can be 
related to the vorticity and strain at the critical point. For axisymmetric flows 

(4.22) q = :Re4 {[W,(E,? 6Jl2- W,? O,)>+ @-$I P+i3 

(4.23) 

where the definitions of vorticity and strain in cylindrical and spherical polar 
coordinates have been used. The dissipation of kinetic energy is e = vq5 where 
q5 = St5X,, and S,, is the rate-of-strain tensor. The quantity q5 is related to @ by 
# = M2(4v)-m t2mk-m-2 @. Equations (4.22) and (4.23) show that the topology of the 
flow near a critical point is determined by a balance between rotation and strain. If 
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@ > w2 strain dominates rotation and the solution trajectories of (4.8) near (t,, 6,) 
will be nodal-like or saddle-like. If W2 > @ the trajectories near the point will form 
a stable focus. The focus does not have to  involve a local maximum in W .  All that 
is required is that  rotation dominate strain. 

5. Limiting behaviour at large and small radius 
At this point we have determined the shape of the (p,q)-trajectory for the class 

of flows under study. There are certain important cases where tc and 6, depend on 
Re but p and q do not. These usually represent limiting cases of an overall solution 
and they can be used to assign endpoints to the trajectory of the overall solution on 
the ( p ,  9)-plane, thus completing the specification of the topology of the flow. 

5.1. The limit t+co  

All of the flows studied in this paper behave like a dipole in the far field with vector 
potentials given by 

I ( t )  sin6 
A (axisymmetric), 
6 -  4z r2 

I ( t )  sin0 
A =-- (planar). ' 4z r 

The impulse integrals (2.29) are substituted into (5.1) and the result is differentiated 
to obtain velocities. The resulting particle-path equations for the far-field flow are 

and 

(5.3) 

The system (5 .2)  has a critical point on the jet axis a t  (5,' 6,) = (Rei/(n):, 0) and in 
the neighbourhood of this point 

The critical point is a saddle at p = i, q = -4 and lies on the parabola (4.18) ; see figure 
2 ( a ) .  The system ( 5 . 3 )  has a critical point at (t,, 0,) = (Rei / (2z): ,  0) and in the 
neighbourhood of this point 

(5.5) 

d7 
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In this case the critical point is also a saddle but with p = 1 ,  as expected from our 
considerations of two-dimensional continuity, and q = -i; see figure 2(b). In $6 
solutions for the six cases (k = i,;,:; axisymmetric and k = $,$, 1 ; planar) are 
summarized. To the extent that these overall solutions approach the dipole be- 
haviour (5.1) when [ is large, one may expect that  the on-axis critical points of these 
solutions will approach the dipole behaviour of the critical points of (5.4) and (5.5) 
when the Reynolds number is large. I n  general one can associate large values of tC 
with large values of Re and in some circumstances it is convenient to replace one 
limiting process by the other. This is just a consequence of the fact that  the radius, 
tc, at which the outwardly directed velocity term and inwardly directed coordinate 
term in (4.2) are in balance must increase as Re is increased. 

5.2. The limit [+O 
(i) Axisymmetric cases ( k  = a, t ,  i) 

the vorticity in spherical polar coordinates 
The solutions we wish to study are obtained by solving the diffusion equation for 

Similarity forms for the vorticity and stream function are 

(5.7) 

In the limit Re+O the stream function and vorticity are symmetric about the 
equatorial plane z = 0. Let 

W6 = sin8 f l ( [ ) ;  Y6 = sin2@ g l ( E ) .  

The velocity is related to the stream function by 

and the radial functions f l  and g, are related through (5.9) and the continuity equation 
(4.15) : 

(5.10) 

Substituting the expression for vorticity from (5.9) into (5.6) leads to the governing 
ordinary differential equation for the axisymmetric cases : 

(5.11) 

Solutions of (5.11) are given in the next section but for the present we want to focus 
on the limit E+O.  In  this limit 

d2f df 1 

dC2 d5 
t2 2 + 2 [ ( E 2  + 1) -- [4(4k-3) tz +2]fi = 0. 

independent of k. Equation (5.12) has two solutions 

(5.12) 

and 

f l  = E ;  91 = c1[2+c2[4, 

f l  = r2; 91 = c 1 t + c 2 p ,  

(5.13) 

(5.14) 
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where (5.10) has been used to solve for gl. The constants of integration c1 and c2 are 
undetermined a t  this point. The non-singular solution (5.13) applies to cases for which 
the applied force is zero for t > 0, for example the vortex ring (k = a). The 
particle-path equations (4.8) for this case are 

(k = a). (5.15) I - Re2 [2c1 cos e] - ag dE - _  
dr 

de sin 0 
- = Re2 [ - 213 
dr  

This system has a critical point on the jet axis at ( E c ,  0,) = (4c1 Re2, 0 ) ,  and in the 
neighbourhood of this point 

(5.16) 

The critical point of the system (5.16) is a star node a t  (p, q )  = ( 1 ,  i) and lies at  the 
point of osculation of the parabola (4.18) and the parabola q = +p2; see figure 2(a). 
This result is typical in that the system (5.16) is independent of the constant of inte- 
gration cl. The singular solution (5.14) applies to cases for which the applied force 
remains on for t > 0; the round jet (k = a) and ramp jet (k = :). The limiting particle- 
path equations for these cases are 

- d6 
dr 

- de = Re2[-cl  sin 8 
dr  

(5.17) 

The system (5.17) has a critical point on the jet axis a t  (Ec,e,) = 2(c1)4Re and in 
the neighbourhood of this point 

(5.18) 

The critical point is a node a t  ( p ,  q )  = ($, +) and lies on the parabola (4.18). 

(ii) Planar cases ( k  = +, $. 1)  
We need to solve the vorticity diffusion equation in cylindrical polar coordinates: 

Similarity forms for the vorticity and stream function are 

(5.19) 

(5.20) 

As before the stream function and vorticity are symmetric about the vertical plane 
x = 0 in the Stokes limit and we search for solutions of the form 

W, = sinBf2(g); Yz = sin8 g2(g). (5.21) 
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The velocity is related to the stream function by 

(5.22) 

and the radial functions f 2  and g ,  are related through (5.22) and the continuity 
equation (4.19) : 

d i d  
- (- - ( 5 g 2 ) )  = - f 2 .  
dk k d 5  

(5.23) 

The expression for vorticity (5.21) is substituted into (5.19) to obtain the governing 
ordinary differential equation for the planar cases : 

(5.24) 

Solutions of (5.24) will be given shortly but, as before, we first want to look at the 
limit [+O. In this limit (5.24) becomes 

dY2 df2 5”+5--f2 = 0, 
dt2 d5 

again independent of k. The two solutions of (5.24) are 

f 2  = 5;  g 2  = c1 6 + c 2  E3,  
and f 2 = 5-’; g2  = c151nE+c2C, 

(5.25) 

(5.26) 

(5.27) 

where c1 and c, are unknown constants. The non-singular solution (5.26) applies to 
the vortex pair (k = 5). For this case the particle path equations (4.8) are 

(5.28) 

This system has a critical point on the jet axis at (&, 8,) = (2c, Re:, 0) and in the 
neighbourhood of this point 

(5.29) 

As in the case of the [+O limit of the vortex ring (k = a) the limiting critical point 
of the vortex pair is a star node at (p, q )  = (1, $) and lies on the parabola q = $p2 ; see 
figure 2 (6 ) .  The singular solution (5.27) applies to the plane jet and plane ramp jet and 
for these cases 

(5.30) 
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Re, <: Re < Re, I Re > Re, 
Re < Re, r l  , 

I '  
( c )  

FIGURE 2. Critical-point trajectories in the (p, p)-plane. ( a )  Axisymmetric jets; Re+O limit 
is @,p) = (1,i) for k = i and (p,p) = (2.i) for k = 4,:. ( b )  Planar jets; Re-0 limit is @,p) = (1,i) 
for k = 4, i, 1. ( c )  Schematic entrainment diagrams depicting three states of motion. See table 1 for 
values of Re, and Re,. 

The system (5.30) has a critical point on the jet axis a t  ([,,B,) = (2c, Rei,O) and in 
the neighbourhood of this point 

(5.31) 

In  this casep = 1 but q depends on the Reynolds number and c, through the logarithm 
which appears in (5.31).$s Re+O, [ , + O  and the point approaches a star node at  
(p, q)  = (1, a) ; however in this limit a regular expansion about the critical point does 
not exist owing to the essential singularity. 

5.5.  The (p, q)-trajectory 
Figure 2 (a ,  b )  depicts the (p, q)-trajectories for the six jet flows studied. The arrows 
on the trajectories represent the direction of increasing Reynolds number. All six 
cases involve two critical Reynolds numbers and three distinct states of motion 
illustrated by the entrainment diagrams shown schematically in figure 2 (c). Below 
the first critical Reynolds number Re,, the entrainment diagram consists of a single 
stable node on the flow axis as deduced from the 6+0 limit. As the Reynolds number 
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is increased above Re, the stable node splits to form an off-axis node and on-axis 
saddle. The condition for the first bifurcation is 

q(Re,) = 0, 8, = 0. (5.32) 

As the Reynolds number is further increased above the second critical value Re, the 
off-axis node becomes a stable focus. The condition for the second bifurcation is: 

q(Re,) = &, 8, + 0 (axisymmetric)\ 

q(Re,) = a, 8, + 0 (planar) J '  
(5.33) 

At this point, considerations of continuity and the limiting behaviour of the 
solutions have generated a fairly complete topological picture of the starting process 
for two- and three-dimensional jets and this is about as far as we can go without 
considering complete solutions. The missing elements are the actual values of Re, and 
Re,. In general this requires a solution of the complete equations of motion. However 
the analysis of (4.15)-(4.21) does not depend on the particular time dependence of 
the velocity field implied by the similarity form of the heat equation given by (4.4). 
The time dependence could be much more complicated. The implication of this is that 
the critical points in the entrainment diagram of the axisymmetric or planar 
nonlinear solution must also follow the same (p, 9)-trajectory as the Stokes solution 
and one may expect a series of flow states topologically similar to those in figure 2 (e). 
In this respect we may use overall solutions of the Stokes equations to give us a first 
cut a t  the values of Re, and Re,. 

6. Stokes solutions 
Complete solutions of the ordinary differential equations (5.1 1) and (5.24) govern- 

ing the radial vorticity are determined using the Frobenius method. Equations 
(5.10) and (5.23) are then integrated twice to obtain the radial stream function. The 
axisymmetric solutions are 

(i) The vortex ring: F ( t ) / p  = Md'(t), k = 

(ii) The round jet: F ( t ) / p  = Mh(t), k = 

(iii) The rump j e t :  F ( t ) / p  = Mth(t), k = 3 
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These solutions involve the error function 

with limiting behaviour 

The solution for the vortex ring (6.1) is the simple dipole solution of the heat equation. 
The solution for the round jet (6.4) may be found in the paper by Sozou (1979) and 
the ramp jet (6.6) was worked out by Allen (1984) as one of a large class of forced 
axisymmetric Stokes flow solutions. Solutions of (5.24) are complicated somewhat by 
the logarithmic singularity which appears when k 2 %. The Frobenius method can 
still be carried through and the results for the planar cases are 

(iv) The vortex pair :  F ( t ) / p  = M6(t) ,  k = f 

(v) The plane jet : F ( t ) / p  = Mh(t) ,  k = $ 

(6.10) 

(6.11) 

(6.12) 

(vi) The plane ramp j e t :  F ( t ) / p  = Mth(t), k = 1 

(6.14) 

The solution for the vortex pair is again the simple dipole solution of the heat 
equation. The plane-jet and plane-ramp-jet cases involve the exponential integral 

w e-z 

b.2 x 
E1(l2) = -dx (6.15) 

, 
with limiting behaviour 

(6.16) I lim El(E2) = -y- In (E2) + t2--+5* +&$'I -&&* + . . . , 
t+o 

lim ~ ~ ( 6 2 )  = e-62, 
5+w E2 

where y is Euler's constant, y = 0.5772156649. 
Figure 3 depicts contour plots of the self-similar stream function for the various 

cases. The pronounced convergence of streamlines in the neighbourhood of the origin 
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FIQURE 3. Contour lines of the self-similar stream function, Y. 

Flow k t o  Re, Re2 
Vortex ring 4 1.47172 4.5437 5.8526 
Round jet 4 0.88165 1.6951 2.5227 
Ramp jet 0.64153 0.9347 1.4472 

Vortex pair t 1.12091 3.3695 3.8818 
Plane jet 8 0.56689 1.6307 2.1945 
Plane ramp jet 1 0.40300 0.8751 1.2086 

TABLE 1 

for the cases with k 2 t is evidence of the singularity in the velocity a t  that point. 
In all cases the tangential velocity has a root to at which V(C0,, 8) = 0 for all 8. This 
root, combined with the antisymmetry of the radial velocity about the vertical axis, 
leads to the closed-centre characteristic of a dipole-like flow, The variation of the 
radius of the point of maximum stream function from case to case reflects the de- 
pendence of to on k shown in table 1.  In general to decreases as k increases for a given 
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geometry of forcing (given m).  For a given type of forcing (given n) the root is smaller 
for line forcing (m = 3) than for point forcing (m = 4). In  physical coordinates the 
closed centre moves vertically upward a t  a rate proportional to l/ti and independent 
of the Reynolds number. As time progresses a given streamline will grow and move 
outward as the vorticity field diffuses away from the origin. Except for the scaling 
in time the pattern of streamlines is independent of the Reynolds number. 

Radial distributions of vorticity are shown in figure 4. The non-singular cases of 
the vortex ring and vortex pair have a maximum at a radius that lies well inside the 
maximum in the stream function. In the singular cases the vorticity is proportional 
to 1/g2 near the origin then dies off exponentially and is essentially negligible beyond 
f; = 2 in all six cases. 

6.1. Regions of validity 
Before the specification of these solutions can be considered complete we need to 
check the validity of the Stokes approximation over the range of the radial 
coordinate. This involves using the Stokes solutions to estimate the order of 
magnitude of the acceleration, pressure, nonlinear-convective and viscous terms in 
the Navier-Stokes equations (3.10) or their reduced form (3.11). Note that in the 
Stokes approximation, the expression for the far-field pressure given by (2.20) is 
valid over 0 < f ;  < 00 since in this limit the pressure satisfies the Laplace equation. At 
large f; 

It is clear from (6.17) and (6.18) that  the nonlinear terms are small compared with 
all other terms a t  large radii. 

The limit f;+O requires some care owing to the singular behaviour of the velocity 
field for cases with k 2 a. The planar case is of particular interest because of the 
logarithmic singularity at the origin. For small 6 we have the following estimates 
using asymptotic forms of the axisymmetric solutions given above : 

In the case of the vortex ring (k = a) the Stokes approximation is uniformly valid 
over the full range 0 < 6 < CO. I n  fact, in the neighbourhood of the origin the 
convective terms are small compared with the rest at all Reynolds numbers. This 
leads one to expect that the Stokes solution should be the appropriate f;+O limit for 
the nonlinear problem in this case. Note that for the vortex ring and vortex pair 
(k = :,+) the pressure is zero for t > 0 since for these cases the time rate of change 
of the impulse is zero. In  the case of the round jet (k = f) the Stokes approximation 
is also uniformly valid over 0 < f; < 00. This is not obvious since the ratio of nonlinear 
convective to acceleration terms appears to be - Re2/t2 which for small but finite Re 
will diverge as f ;+O.  However in this case the small-f; limit is a steady flow and the 



Viscous starting jets 1 7 9  

FIGURE 4. Radial vorticity distributions, fi(C), f&) for (a) the vortex ring (k = i), (b) the vortex 
pair (k = i), (c) the round jet and ramp jet (k = 4, $), ( d )  the plane jet and plane ramp jet (k = $, 1). 

acceleration term is identically zero. The appropriate comparison in this limit is only 
between pressure-gradient, viscous and convective terms for which the ratio is - Re2. 
For the case of the ramp jet (k = i) the region near the origin is essentially non-steady 
and the comparison of convective to non-steady terms has to be retained. The 
unsteady Stokes approximation in this case appears to lose validity inside a radius 
such that Re2/t2 - O(1).  In  physical coordinates this is a growing circle of radius 
r - t .  

For the planar cases the estimates of various terms are 

As for the vortex ring, the Stokes approximation to the vortex pair (k = i) is 
uniformly valid over 0 < 6 < 00 with the validity near 6 = 0 holding for all Reynolds 
numbers. The plane-ramp-jet (k = 1 )  Stokes approximation is valid in the range 
outside a circle of radius such that Ref/ t2  - O( 1) .  Inside the circle the convective terms 
dominate the acceleration terms as t + O .  The pressure-gradient and viscous terms 
dominate the convective terms throughout 0 < [ < 00. The case of the plane jet 
(k = #) requires closer study. As for the round jet, the ratio of convective to 
acceleration terms diverges as t + O  and the Stokes approximation would appear to 
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become invalid. However, in contrast to the round jet, the stream function and 
velocity for the plane-jet solution are essentially unsteady. In  this limit 

(6.23) 

The quantities A,, u, and 2, all depend on ln(4vt) in the limit (+O.  However the 
vorticity is independent of time : 

(6.24) 

Estimates of the convective and diffusive terms in the vorticity equation give, near 
k = O ,  

(6.25) 

Diffusion of vorticity dominates convection over the full range 0 ,< 6 < 00. 

A comment on Stokes' paradox 
The plane-jet solution (6.12) and its limiting behaviour (6.23) provide some insight 

into the problem of constructing low-Reynolds-number approximations to planar 
flows. In  general planar solutions of the biharmonic equation for the stream function 
contain logarithmic terms which lead to infinite velocities a t  large radius. The classic 
case is the linear solution for steady flow around a circular cylinder worked out by 
Stokes in 1851. The singular behaviour of the logarithmic term prevents the solution 
from being able to match uniform flow conditions a t  infinity. The breakdown of the 
Stokes approximation is usually attributed to the fact that there will always be a 
region where the ratio of convective to diffusive terms - rRe will be of order one 
regardless of the magnitude of Re (Van Dyke 1975). A solution to the so-called Stokes 
paradox was provided by Oseen (1910) who added a linear convective term to the 
Stokes equations. Although this approach was ad hoc in nature i t  did provide a 
uniformly valid solution to the problem and computations of the full equations 
generally follow Oseen's solution a t  low Reynolds number. 

Stokes regarded the paradox as an indication that no steady flow exists. Any real 
flow has to be started from rest. The complete solution therefore must include the 
starting process and one can reason tha.t the large-time limit might retain a residue 
of the initial transient. Although Stokes' argument seems to have been discounted 
in connection with the cylinder problem, it remains central to the case of the plane 
jet where the Oseen correction is not available. In  this case the inclusion of the 
starting process is essential and leads directly to the solution (6.12) which contains 
logarithmic terms but in a benign form multiplied by a decaying exponential. The 
exponentially decaying vorticity a t  infinity associated with the start-up ensures an 
algebraically decaying velocity field and an overall solution which, though only valid 
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for small time, is uniformly valid over all space. Although the fact that, at small 
radius, the Stokes approximation is apparently valid for vorticity but not velocity 
might be regarded as paradoxical. The contrast with the impulsively started round 
jet is important. In  this case a steady flow is established in the neighbourhood of the 
force a t  t = Of and remains steady for all time. This is true for the low-Reynolds- 
number limit as well as the full nonlinear problem in which the limiting flow a t  t + O  
corresponds to the classical exact Landau (1944)-Squire (1951) solution of the steady 
jet. In  the case of an impulsively started plane jet a steady vorticity field is established 
at  t = Of but the velocity field and stream function remain logarithmically unsteady 
a t  least up to the time the Stokes limit becomes invalid. This occurs when 

Mti/V - O(1). (6.26) 

Eventually a steady flow near t = 0 should be established but precisely when this 
occurs and whether only the next order, several orders or all orders of approximation 
in time will be required remains an open question. 

6.2. Critical Reynolds numbers 

As mentioned above, the self-similar tangential velocity V ( t ,  0 )  of the Stokes solution 
always has a zero at a fixed radius to for all 8. From (4.11) we see that the critical 
Reynolds number Re, a t  which the on-axis node begins to bifurcate to a saddle and 
off-axis node occurs when 

(6.27) 

This expression is somewhat easier to evaluate for Re, than (5.32) which requires the 
construction of q(Re). The second critical Reynolds number Re, a t  which the off-axis 
node begins to spiral is found using (5.33). This requires the construction of q but 
the procedure is simplified somewhat by the fact that  5, = to for the off-axis critical 
point at all Reynolds numbers. When Eo is substituted into (4.11) the result is a 
relationship between 0, and Re : 

(6.28) 

A further manipulation to form q leads to a unique specification of Re, through the 
condition given by (5.33). This is the basic procedure for finding the critical Reynolds 
numbers in all six Stokes flow solutions. The resulting values of to, Re, and Re, are 
given in table 1. Note that the critical Reynolds numbers are quite low compared 
with typical instability Reynolds numbers of free-shear flows and are likely to be 
even lower in the nonlinear case. The critical Reynolds numbers exhibit the same 
sort of trend as the root 6,. Both Re, and Re, decrease as k increases for a given m 
and the critical Reynolds numbers of the planar case tend to be lower than those 
of the axisymmetric case for a given n. All this is consistent with the notion that 
disturbances are stronger in two dimensions than in three. I n  the case of the numerical 
solution of the round jet the critical Reynolds numbers of the nonlinear problem were 
found to be lower than those deduced from the Stokes approximation (Cantwell & 
Allen 1984) which is consistent with the notion that nonlinearity is destabilizing. 
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FIGURE 5 .  Entrainment diagrams for Re < Re,. 

7. Discussion 
Entrainment diagrams for the various cases are given in figures 5 ,  6 and 7 

corresponding to Reynolds-number ranges Re < Re,, Re, < Re < Re, and Re > Re, 
respectively. These patterns are constructed by forward integration of (4.2) for a set 
of initial points arranged in a semicircle about the origin. The Reynolds number is 
held fixed during the integration so that the resulting trajectories depict the 
instantaneous vector field (Rdm U - i e ,  V / f ) .  The vector field in these figures can be 
thought of as a flow in a contracting space of divergence - 1  or - t  depending on 
the number of dimensions. It is a flow with a uniform distribution of sinks as it might 
be seen by an observer who is receding out of the plane of motion at  a rate 
proportional to l/&. Fluid appears to vanish into the critical points but in fact there 
is no violation of continuity, there are no infinities at the critical points and changes 
in topology occur smoothly as the Reynolds number crosses critical values. Note the 
factor of 2 in the scale of the axes of the vortex ring and vortex pair compared with 



F'iscous starting jets 183 

Y 
(4Wf)t 

- 4  - 2  0 2 4 

2 

1 

- 2  - I  0 1 2 

- 2  - 1  0 I 2 
" 
- 2  - 1  0 I 2 

FIQURE 6. Entrainment diagrams for Re, < Re < Re,. 

the other four cases. To aid in the interpretation of these diagrams a cine film has 
been made which depicts the movement, in physical coordinates, of timelines 
subjected to the motion of the round jet, vortex ring and ramp jet. Several frames 
from this film are shown in figures 8 and 9. A copy of the film can be obtained on 
loan by request to the author. 

All six cases exhibit the three basic states of motion shown schematically in figure 
2 ( c ) .  The entrainment diagrams for the lowest-Reynolds-number state, shown in 
figure 5 ,  are dominated by the radial inflow induced by the scaling of coordinates. 
I n  the limit Re-tO the critical points would move to the origin and the entrainment 
diagrams for the vortex ring, vortex pair, plane jet and plane ramp jet ( k  = i, $, 2 , l )  
would reduce to  a simple star pattern converging to  the origin while the trajectories 
of the round jet and ramp jet ( k  = i, i) would retain their nodal character. We deduced 
this result in $4.2 when we worked out the values of p and q for the ( + O  limit of 
the various cases. 

Figure 6 shows the entrainment diagrams for the intermediate-Reynolds-number 

I P L M  173 
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FIGURE 7 .  Entrainment diagrams for Re > Re,. 

state. The on-axis node has moved outward, changed to a saddle, and all trajectories 
converge to the off-axis stable node. At the scale of these diagrams the nodal point 
itself is quite difficult to resolve. The region over which the radial direction of the 
trajectories changes sign is very thin and gives the appearance of a nodal line 
emanating from the on-axis saddle. The convergence of trajectories into a thin sheet 
before they reach the critical point is also evident in the high-Reynolds-number state 
depicted in figure 7. There is an interesting variation with kin the shapes of the vortex 
roll-ups in figure 7. The non-singular cases of the vortex ring and, particularly, the 
vortex pair have broad well-defined foci with trajectories which spiral in at a shallow 
angle while the foci of the ramp jets are quite small and confined with trajectories 
which spiral in at a fairly steep angle. The angular position Bc of the focal point 
increases with Reynolds number until it reaches $I where it coincides with the point 
of maximum stream function. For the cases of the vortex ring and vortex pair the 
vorticity maximum of the Stokes solution is away from the critical point at  all 
Reynolds numbers. This takes us back to the expressions for q in (4.22) and (4.23). 
The topology of the flow near the critical point is a consequence of the local balance 



Viscous starting jets 185 

FIGURE 8. Distortion of timelines in physical coordinates under the action of the nonlinear 
round jet a t  (a )  Re = 4, (b )  Re = 6, ( c )  Re = 30. Time increases from left to right. 

3 
FIGURE 9. Distortion of timelines in physical coordinates under the action of (a )  the Stokes vortex 
ring with initial Reynolds number equal to 100 and final Reynolds number much less than Re,, 
and (b )  the Stokes ramp jet with initial Reynolds number less than Re, and final Reynolds number 
equal to 30. Time increases from left to right. 

7-2 
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between vorticity and strain and a focus does not in general correspond to a point 
of maximum local vorticity. 

The time dependence of the Reynolds number in each case leads to contrasting 
physical interpretations of the respective entrainment diagrams. In  the special case 
of the round jet the Reynolds number is independent of time and the trajectories 
represent true particle paths. Figure 8 shows several frames from the cine film which 
depicts the distortion of timelines under the motion of the round jet a t  Reynolds 
numbers in the three regimes of interest. The film was made from the numerical 
computations of the nonlinear problem reported in Cantwell& Allen (1984) although 
the basic motion of the Stokes solution is very similar. The main difference lies in 
the long slender stem and the small angle of spread in the nonlinear high-Reynolds- 
number case. The first critical Reynolds number defines the initiation of an inter- 
mediate state of motion between simple lateral straining concentrated on the jet 
axis, Re < Re,. and vortex roll-up off the axis, Re > Re,. Fluid lines which are 
initially smooth may form sharp corners as they are drawn into the region of the off- 
axis node (figure 8 ( b ) .  The second critical Reynolds number defines the onset of a 
starting vortex. Perhaps the best experimental example of the flow depicted in 
figure 8 ( c )  can be seen in G. 1. Taylor’s well-known film on low-Reynolds-number 
flow. 

I n  the case of a vortex ring or vortex pair the entrainment diagram depicts the 
changing topology of the flow in the late stages of decay and Re, defines a 
dimensionless time a t  which the tendency of the flow to roll a fluid line terminates. 
The intermediate state Re, < Re < Re, occurs only briefly and sharp corners do not 
have time to  form. One of the conclusions one can draw from this view of the decay 
of a vortex ring is that ,  if an initially straight timeline interacts with a vortex ring 
at a time that exceeds the critical time corresponding to  Re,, then no roll-up of this 
line will occur regardless of how long one waits and in spite of the fact that  the 
streamline pattern is closed. This can be understood by observing that, in this case 
and in the case of the vortex pair, when Re < Re, the timing between the outward 
movement of the peak in the stream function and the convection of a given fluid line 
is such that no segment of the line has a chance to fully rotate before the centre in 
the streamline pattern has diffused away. Figure 9 (a)  shows several frames from the 
film which depicts this situation. Two initially vertical timelines are set into motion 
by the Stokes solution. The computation is carried out in physical coordinates and 
the initial Reynolds number is set a t  a value that greatly exceeds Re,. As time 
proceeds the timeline closest to  the origin rolls rapidly about the off-focus which, a t  
this limiting Reynolds number, is centred on the peak in the stream function. The 
second timeline begins to roll but because i t  started life farther from the focus it does 
not complete a full rotation before Re, is reached. By the rightmost frame the motion 
is essentially dead and the second timeline will never be wrapped any further. 
Continued movement of the timelines as time increases is purely diffusive. On the 
axis, where the two timelines are subjected to a saddle-point motion, they merge and 
quickly become indistinguishable. The merging of timelines in all the cases depicted 
in figures 8 (b ,  c )  and 9 is a reflection of the behaviour suggested by the thinness of 
the region across which the radial direction of the trajectories in the entrainment 
diagrams of figures 6 and 7 changes sign. 

Glezer (1981) investigated the turbulent vortex ring and found that the lengthscales 
of the ring varied as b, which is consistent with the notion that at high Reynolds 
number the large-scale structure is independent of 1’. The entrainment diagram was 
shown experimentally to consist of two on-axis saddles rather than one, with the 
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second saddle behind the two foci. A similar structure appears in the case of the rising 
thermal studied by Griffiths (1986) although no second saddle appears in the 
computations of the round jet by Allen (1984). I n  the latter case the singularity a t  
the origin produces a velocity field that decays monitonically with radius at all 
Reynolds numbers. Therefore there is only a single point a t  which the velocity and 
coordinate are in balance. I n  the non-singular cases of the vortex ring, vortex pair 
and thermal, the velocity field of the Stokes solution decays monitonically with radius 
but when the effects of nonlinearity are included the peak in the radial velocity. 
convects in the direction of the force. This leads to  a second point on the axis a t  which 
Re:" U-aC = 0 ,  corresponding to the second saddle. 

In  the cases of the plane jet and two- and three-dimensional ramp jets the 
entrainment diagrams depict the early stages of the flow. As in the case of the vortex 
ring and vortex pair, the intermediate state Re, < Re < Re, occurs only briefly and 
smooth lines subjected to the motion will not develop corners. The second critical 
Reynolds number defines a dimensionless time a t  which a starting vortex begins. 
Because the Reynolds number increases with time any timeline will eventually be 
rolled into the off-axis focus. Figure 9 ( b )  shows several frames from the film which 
depict this case. As time increases the rolled-up timeline becomes somewhat V-shaped. 
This is characteristic of all the cases with Ic 2 4 and is related to the interaction of 
the timeline with the singular velocity field near the origin. It is interesting to 
compare the shapes of the timelines in the neighbourhood of the centre of the roll-ups 
in figure 9 ( a )  and ( b ) .  I n  the case of the vortex ring the timeline in this region is highly 
cusped, reflecting the early high-Reynolds-number history of the flow and the number 
of turns of the timeline is a measure of the magnitude of the initial Reynolds number. 
In  the case of the ramp jet the timeline near the centre of the roll-up has a rather 
blunt nose, reflecting the slow distortion associated with the early low-Reynolds- 
number history of the flow. The outer timeline is nearly unmoved by the early motion 
but by the time the last frame of figure 9(b) is reached it has formed a cusp which 
will become more pronounced as the roll-up becomes more vigorous. 

8. Concluding remarks 
The mechanics of the starting process for a family of two- and three-dimensional 

jets has been studied in terms of particle trajectories of the Stokes solutions in a phase 
space of similarity coordinates. The vector field which results when the flow pattern 
is displayed in this manner provides a useful basis for comparison of various flow cases 
and a framework for understanding the role of the Reynolds number in determining 
flow behaviour. Six complementary cases are used to illustrate contrasting depend- 
ence on the Reynolds number. They all undergo a sequence of bifurcations in the 
topology of the phase portrait of particle paths as the Reynolds number is varied. 
Although the critical Reynolds numbers a t  which these bifurcations occur are quite 
low they exceed the range of validity of the Stokes approximation. However 
according to the analysis of the (13, q)-trajectory in $54.5 the nonlinear solution must 
follow the same sequence of topological states albeit with different, probably lower. 
critical Reynolds numbers. 

The physical interpretation of the entrainment diagrams is straightforward in the 
case of the round jet for which the self-similar particle-path equations are strictly 
autonomous and the integrated trajectories are true particle paths. In  this case a 
the non-autonomous cases the physical interpretation of the entrainment diagrams 
is not SO straightforward. I n  these cases the forcing generates a flow which passes 
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through all three states of motion and the order in which the states are encountered 
depends on whether the Reynolds number is directly or inversely proportional to 
time. Nevertheless a knowledge of the critical Reynolds numbers and underlying 
topology is still useful for understanding the history of the motion and the movement 
of timelines and for identifying trends as the type of forcing is varied. 

The Stokes solutions considered in this paper can be regarded as the lowest mode 
of an eigenfunction expansion of the full nonlinear solution. In  this respect the 
entrainment diagrams depict the behaviour of this mode as it would contribute to  
the full solution over the entire range of Reynolds numbers. It is of considerable 
interest therefore to study the properties of higher modes and their nonlinear 
interactions and to search for the possible occurrence of temporally chaotic solutions 
of the particle-path equations as the Reynolds number is increased. Given the 
constraints on the 0, q)-trajectory imposed by continuity it seems unlikely that 
chaotic particle paths will occur unless the restriction to axisymmetric or planar flow 
is removed. In  this case the flow would be described by a three-dimensional phase 
space with critical points characterized by three invariants. One may speculate that 
changes in flow topology will still occur through a, perhaps infinite, sequence of 
bifurcations associated with a series of critical Reynolds numbers. The nature of this 
sequence and whether it is associated with the onset of chaotic behaviour is a 
subject for further study. 
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